

Towards Creating an Ensemble of Global Ocean Analysis: Ensemble GIOPS

Drew Peterson Environmental Numerical Prediction Research Section

for Joint Workshop of the OS-Eval TT and CP-TT and SynObs Kick-Off, Tsukuba, Japan, 15-18 November, 2022

andrew.peterson@ec.gc.ca

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In Collaboration with

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Greg Smith, Yimin Liu Environmental Numerical Prediction Research Section Kamal Chikhar Meteorological Service of Canada

NINO3.4 Error/Spread

TM NINO3.4 Error vs Lead Time

NINO3.4 Error/Spread

TM NINO3.4 Error vs Lead Time

NINO3.4 Error/Spread

NINO3.4 Error/Spread

NINO3.4 Error/Spread

TM NINO3.4 Error vs Lead Time

 Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

 Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)

Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology

Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)

Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)

 reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology

7-d GR/GD assimilation window assimilating (GD is -7d)

SST (L4), SSH (along track) and T&S profiles

Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.

▶ First NWP centre to employ EnKF operationally in 2005.

- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)
 - SST (L4), SSH (along track) and T&S profiles
- 7 1-d GU assimiliation windows with only SST DA

- Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.
 - ▶ First NWP centre to employ EnKF operationally in 2005.
- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)
 - SST (L4), SSH (along track) and T&S profiles
- 7 1-d GU assimiliation windows with only SST DA
 - provides ocean initialization with forecasts

- Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.
 - ► First NWP centre to employ EnKF operationally in 2005.
- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)
 - SST (L4), SSH (along track) and T&S profiles
- 7 1-d GU assimiliation windows with only SST DA
 - provides ocean initialization with forecasts
- + rescaled forecast tendency blending of 3D Var sea ice analysis.

- Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.
 - ▶ First NWP centre to employ EnKF operationally in 2005.
- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)
 - SST (L4), SSH (along track) and T&S profiles
- 7 1-d GU assimiliation windows with only SST DA
 - provides ocean initialization with forecasts
- + rescaled forecast tendency blending of 3D Var sea ice analysis.

Cana

(日)、(四)、(三)、(

Atmospheric forcing from Global Deterministic Prediction System (GDPS) IAU step

- Global Ensemble Prediction System (GEPS) atmospheric DA is LETKF.
 - ▶ First NWP centre to employ EnKF operationally in 2005.
- GIOPS Ocean DA is version of System d'Assimilation Mercator version 2 (SAM2)
 - reduced-order extended Kalman filter using a Singular Evolutive Extended Kalman filter (SEEK) methodology
- 7-d GR/GD assimilation window assimilating (GD is -7d)
 - SST (L4), SSH (along track) and T&S profiles
- 7 1-d GU assimiliation windows with only SST DA
 - provides ocean initialization with forecasts
- + rescaled forecast tendency blending of 3D Var sea ice analysis.

Cana

A D > A B > A B > A

- Atmospheric forcing from Global Deterministic Prediction System (GDPS) IAU step
- Ocean model is NEMO

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

+ Storto STOPACK package for NEMO

Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)
- Stochastic Perturbed Parametrization Tendencies (SPPT)

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)
- Stochastic Perturbed Parametrization Tendencies (SPPT)
- Stochastic Kinetic Energy Backscatter (SKEB)

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)
- Stochastic Perturbed Parametrization Tendencies (SPPT)
- Stochastic Kinetic Energy Backscatter (SKEB)
 - Results in instabilities.
 - Increases spread in quiescent (gyre) areas with small errros.

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)
- Stochastic Perturbed Parametrization Tendencies (SPPT)
- Stochastic Kinetic Energy Backscatter (SKEB)

replace GDPS forcing with GEPS Ensemble Atmospheric Forcing (21 members)

From 12-36h forecast

- Storto, A, Andriopoulos, P. A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. QJRMS (2021); 1691–1725. https://doi.org/10.1002/qj.3990
- Stochastic Parameter Perturbations (SPP)
- Stochastic Perturbed Parametrization Tendencies (SPPT)
- Stochastic Kinetic Energy Backscatter (SKEB)
- Additional Details in Extra Slides.

Spread Induced in System - T(0-100m)

GEPS Fluxes only – 2020

Flux + SPPT + SPP - 2020

Flux + SKEB + SPP - 2020

Flux + SPPT + SPP - 2020

SST SPREAD / RMSE Relationship

SPREAD 2021/06/02-2022/06/01

SST SPREAD / RMSE Relationship

RMSE 2021/06/02-2021/06/01

Canada

Canada

Profile Error Relations

Salinity

Profile Error Relations

Global 2000m

Canada

Temperature

S-profile 0 250 500 750 --- Ensemble 1000 --- Operation --- Control 1250 --- mean 1500 - mse ····· sprd 1750 --- crps ----- stde 2000 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Salinity

Solid Lines – RMSE Red Dashed line – Ratio RMSE/Ens.Std. NINO3.4 Region

SST RMSE

- GEPS forecasts using Ensemble Analysis (ENSA)
- GEPS forecasts using GIOPS-GD operational analysis (CTRL)
- Operational GEPS forecasts on Wednesdays (WED7)
 - 7 day removed from GD analysis
- Operational GEPS forecasts on Thursday (THU1)
 - 1 day removed from GD analysis
 - Operational GEPS Wednesday and Thursday forecast have been updated 7 and 1 times respectively by a SST assimilation only update (GU), and therefore are likely positioned closer to the validating and assimilated SST analysis than the full assimilation GD cycle Ensemble and GIOPS-GD analysis.
 - Wednesday operational GEPS forecasts will match forecast dates exactly, Thursday forecasts will be offset by one day.

N.H. Sealce Forecasts using Ensemble Analysis

N.H. Sealce Forecasts using Ensemble Analysis

Sea Ice Analysis is still deterministic

Sea Ice : SPS

Question

Can we use the ensemble information to generate better background error covariances.

Question

Can we use the ensemble information to generate better background error covariances.

Solution

Not ready for large ensemble size yet. Early attempt using GEPS forecast at several long leads – with no initial spread!! Required lead times up to 28 days.

SST Variance of Background **Error Modes**

Valid for Dec. 12, 2019

Climatological modes represent sub-monthly scale variability - e.g. Ocean mesoscale features Ensemble modes represent ocean response for a particular date to variations in atmospheric state

- i.e. projection of atmospheric uncertainty on ocean _
- Effect is amplified due to use of large lead times (much larger error than typical forcing used for trial fields)
- Large differences in Southern Ocean (near sea ice) Janada

Environment and limate Change Canada Environnement et Changement climatique Canada

SST Covariances in Labrador Sea

Climatological background error

Ensemble background error

.

.

Environment and Climate Change Canada Environnement et Changement climatique Canada

Page 10 - November-8-17

Projection of SST observations on SSH/SSS

Recall: We assimiltate an SST analysis product

Summary and Future Plans

- Have constructed ensemble GIOPS system
 - Really just 21 difference GIOPS systems!
- Initial investigations have shown improvements in spread
- Profile RMS error reduced
- Require ensemble of SST analysis to represent obs error.
- Include ensemble wave effects to further perturb
- Ultimately will likely require inflating ensemble spread.
- Improvements in atmospheric forecast harder to find.
- But forecast SST does show improvements (CRPS)
- Forecast Sea Ice SPS also shows improvement.
- Incorporate *Errors of Day* using ensemble spread.
- Other improvements?
 - Global drifter statistics?
 - Sound speed wave guides?
 - wide heNiñeowandhe Tiropical Hurricane Forecasts? Canada Canada เมษาสามารถเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป

Extra Slides

STOPACK Package

Random Perturbations

$$\zeta_t = \zeta(x, y, z, t) = \gamma(z)[c\zeta(x, y, z, t-1) + d\phi(x, y, z, t)]$$

- AR(1) process with decorrelation time τ and $c = exp(-\Delta_t/\tau)$ and $d = \sqrt{(1-c^2)}$.
- φ is random white noise generated at each grid point with a normal distribution.
- Spatial correlation are archived via an N-pass Shapiro filter, with response at length scale L

$$R = \left(1 - \sin^2\left(\frac{\pi\Delta x}{L}\right)\right)^N$$

Canac

(日)

Stochastic Parameter Perturbations (SPP)

Parameter p perturbed to \hat{p} with lognormal distribution:

 $\hat{p} = p \exp \zeta_t$

with mean of lognormal 1
ightarrow mean of normal $= -rac{1}{2}\sigma^2$

l could also be normal distribution $\hat{p} = p(1 + \zeta_t)$ (but isn't).

$$au=$$
 10 days and $extsf{N}=$ 300 (\sim 300 km).

 σ varies 0.01 (TKE below ML) – 0.3 (diffusion/viscosity).

Perturbations on 13 parameters activated.

SPP terms used

```
! Vertical mixing of tracers (TKE or GLS only)
                  = 2
nn_spp_avt
! Vertical mixing of momentum (TKE or GLS only)
nn_spp_avm
                  = 2
! Lateral diffusivity (working ONLY for key_traldf_c2d ,
nn_spp_ahtu
                  = 2
! ahtu/ahtv : for laplacian/iso operator
nn_spp_ahtv
                  = 2
! ahtw : for iso operator
nn_spp_ahtw
                  = 2
! Enhanced vertical diffusion
nn_spp_aevd
                 = 2
```


SPP terms used (continued)

```
! TKE : Langmuir cell coefficient
nn_spp_tkelc
                  = 2
! TKE : Kolmogoroff dissipation coeff.
nn_spp_tkeds
                  = 2
! TKE : Fraction of srf TKE below ML
nn_spp_tkefr
             = 2
! Diffusive bottom boundary layer:
nn_spp_ahubbl
                  = 2
! Recommended: same values for both
nn_spp_ahvbbl
                   = 2
! Bottom friction
nn_spp_bfr
                  = 2
! Solar radiation penetration
nn_spp_qsi0
                  = 2
 ! Solar radiation penetration
```


Stochastically Perturbed Parameter Tendency (SPPT)

Standard Tracer X Tendency

$$\frac{\partial X}{\partial t} = D(X) + P(X),$$

where D(X) is dynamics (advection), and P(X) is other physics.

Perturb as

$$\frac{\partial X}{\partial t} = D(X) + (1 + \zeta_t)P(X)$$

$$au=1$$
 days and $extsf{N}=$ 75 (\sim 75 km).

σ = 0.99

SPPT settings activated

SPPT currently in effect (4)

!!! Switch for lateral diffusion ln_sppt_traldf = .true. !!! Switch for solar radiation ln_sppt_traqsr = .true. !!! Switch for Asselin time-filter ln_sppt_traatf = .true. !!! Switch for lateral diffusion ln_sppt_dynldf = .true.

Stochastic Energy Backscatter (SKEB)

- See Storto QJRMS paper for details.
 - Backscattering of energy from unresolved to resolved scales
 - inverse cascade
- $= \tau = 0.5$ days and N = 40, with ratio of 0.4.
 - Deactivated in final setup
 - Results in instabilities.
 - > Increases spread in quiescent (gyre) areas with small errros.

